В мире разработано большое количество различных устройств, которые питаются от батареек. Однако одноразовые элементы питания нужно постоянно покупать, а после того как они придут в […]
Читать дальшеРубрика: NiCd
Никель-кадмиевый аккумулятор (NiCd) — вторичный химический источник тока, в котором катодом является гидроксид никеля Ni(OH)2 с графитовым порошком (около 5—8 %), электролитом — гидроксид калия KOH плотностью 1,19—1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21—25 %), анодом — гидроксид кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка).
Никелевый электрод представляет собой пасту метагидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щёлочи, который замерзает при −27°С.
В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.
Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от неоптимальной работы недорогих контроллеров.
Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.
При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию.
После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.
NiCd-аккумуляторы типоразмеров SC и 4/5SC часто применяемые в аккумуляторных батареях бытовых электроинструментов, к примеру в шуруповёртах
Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.
Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.
Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.
Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до −40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.
Основное преимущество никель-кадмиевых элементов по сравнению со свинцово-кислотными заключается в том, что они почти не выделяют газа и отличаются простотой в обслуживании. При этом у них очень низкое внутреннее сопротивление и они способны отдавать большой ток в относительно короткие промежутки времени — практически так же, как и свинцово-кислотные. NiCd-аккумуляторы переносят даже короткое замыкание. Кроме того, эти устройства могут выдерживать длительные нагрузки, причем их функциональные свойства мало изменяются при понижении температуры.
NiCd-устройства, несмотря на то, что они уступают по емкости (при тех же массе и габаритах) аккумуляторам других типов, остаются наиболее популярными для применения в целом ряду портативных устройств, особенно там, где требуется высокая отдача. Поэтому до сих пор около половины выпускаемых аккумуляторов для переносного оборудования — никель-кадмиевые. Появление новых технологий электрохимических аккумуляторов сначала привело к резкому сокращению использования NiCd-аккумуляторов, однако по мере выявления недостатков новых моделей интерес к NiCd-устройствам снова возрос. Так, в приборах, где применяются электродвигатели и потребляются довольно большие токи, NiCd-батареям трудно найти замену. Однако максимальная емкость потребительских NiCd-аккумуляторов не превышает 3000 мА·ч. Типовые разрядные токи, на которых используются подобные аккумуляторы, невысоки — 20-40 А. При токах до 70 А NiCd-батареи и ныне остаются вне конкуренции.
В числе преимуществ NiCd-аккумуляторов можно назвать следующие:
- работоспособность в широком интервале рабочих токов заряда, разряда и температур окружающей среды (допустимый ток разряда составляет 0,2-2 Сн, диапазон рабочих температур — от –40 до +50 °С);
- высокая нагрузочная способность даже при низких температурах (NiCd-аккумулятор при низких температурах даже можно перезаряжать);
- возможность быстрой и простой зарядки в любом режиме (NiCd-аккумуляторы нетребовательны к типу зарядного устройства);
- большое количество циклов зарядки-разрядки (при правильном обслуживании NiCd-аккумулятор выдерживает свыше 1000 циклов);
- возможность восстановления после понижения емкости или длительного хранения;
- пожаро- и взрывобезопасность, устойчивость к механическим нагрузкам;
- низкая цена, длительный срок службы и широкая доступность, большой ассортимент потребительских формфакторов.
Для зарядки NiCd-аккумуляторов быстрый режим более предпочтителен, чем медленный, а импульсный заряд — чем заряд постоянного тока. К тому же для восстановления никель-кадмиевых аккумуляторов можно применять так называемый реверсивный заряд, когда импульсы разряда чередуются с импульсами заряда. Реверсивный заряд даже ускоряет процесс, поскольку помогает рекомбинации газов, выделяющихся во время заряда: дополнительные исследования показали, что реверсивный заряд добавляет около 15% к сроку службы NiCd-аккумулятора. Для увеличения отдачи этих аккумуляторов некоторые пользователи практикуют быструю зарядку с дозарядкой слабыми токами, что приводит к более полной зарядке батарей.
Следует особо отметить важность правильной утилизации отработавших NiCd-элементов. Дело в том, что кадмий, содержащийся в NiCd-аккумуляторах, по токсичности не уступает ртути. Поэтому во всех цивилизованных странах имеются пункты приема таких батарей, а стоимость переработки сразу включается в цену аккумуляторов. Более того, во многих странах запрещено использовать NiCd-элементы, которые не включены в общую программу утилизации, то есть на которых отсутствует специальная маркировка.
Зарядное устройство для аккумуляторных батареек
Зарядное устройство для аккумуляторных батареек служит для перезарядки аккумуляторов, повсеместно применяемых в технике, пультах, фонариках или радиоуправляемых машинках. Качественный «зарядник» должен проявлять всеядность к типам […]
Читать дальшеМожно ли заряжать заряженный аккумулятор
Современная техника, автомобильный транспорт и прочие сферы жизни очень часто не обходятся без средства накопления заряда ‒ аккумулятора. Запуск двигателей, поддержание функционала электрических приборов вдали […]
Читать дальше